为什么叫八路军| 为什么老是拉肚子| pony什么意思| 右手臂酸痛是什么前兆| 流清鼻涕是什么感冒| 未融资是什么意思| 10月5号什么星座| 焱字五行属什么| sap是做什么的| 讨吃货什么意思| 神经递质是什么| 端倪是什么意思| 迈之灵治什么病| 什么是磁场| 经常打喷嚏是什么原因| 什么是早孕| 硬化萎缩性苔藓是什么病| 药流后吃什么消炎药| 后羿射日告诉我们什么道理| 经血逆流的症状是什么| 有什么好用的vpn| 酒是什么时候发明的| 趁什么不什么| 吃山楂有什么好处| 高血压挂什么科| 汗水多是什么原因| 紫苏长什么样子图片| 清宫后需要注意什么| 海藻是什么| 嗓子疼喝什么茶最有效| 小猫吃什么| 瑄字五行属什么| 本色出演是什么意思| 乌龟能吃什么| 手痛挂什么科| 短装是什么意思| 吃了阿莫西林不能吃什么| 中央电视台台长是什么级别| 什么样的人容易得痛风| 什么补蛋白最快的食物| 体积是什么| 梦见怀孕的女人是什么意思| pre是什么的缩写| 什么是形声字| 玛瑙是什么材质| 为什么长智齿| 3个火念什么| 南瓜和窝瓜有什么区别| 中暑是什么原因| 静脉曲张是什么原因引起的| adh是什么激素| 脚底发黄是什么原因| 血小板压积偏低是什么意思| 小王子讲了什么故事| 久视伤血是什么意思| 打日本电话前面加什么| 白俄罗斯和俄罗斯有什么区别| 现实是什么意思| 恶趣味什么意思| 皮肤痒用什么药最好| 什么是周边| 茧子是什么意思| 一九七二年属什么生肖| 疖肿什么意思| 脑子瓦特了什么意思| 黑猫警长为什么只有5集| 雾化主要治疗什么| 梦到抓鱼是什么意思| 努尔哈赤姓什么| 阴阳两虚吃什么| 一天中什么时候最热| 什么头什么面| 梦到分手了是什么征兆| 人乳头瘤病毒58型阳性是什么意思| 高瞻远瞩是什么生肖| 横空出世是什么意思| 胃泌素是什么| bpd是胎儿的什么意思| 午时属什么生肖| 今天中午吃什么| 被隐翅虫咬了涂什么药| 三四月份是什么星座| 为什么白天能看到月亮| 平板电脑是什么| 一一是什么意思| 喝茶叶茶有什么好处和坏处| 出现血精吃什么药| 奶霜是什么| 脖子皮肤黑是什么原因| 什么是撸管| 洋葱可以炒什么| s和m什么意思| 尾椎骨疼是什么原因| 血糖高喝什么酒好| 空调外机为什么会滴水| 杨柳代表什么生肖| 尼龙属于什么材料| 什么火锅最好吃| 毒龙钻是什么| 手发抖吃什么药| 拉青色大便是什么原因| 85年五行属什么| 积食是什么症状| 蚕豆是什么豆| 西同念什么| 诸葛亮姓什么| 三百多分能上什么大学| 白居易有什么之称| 1.7号是什么星座| 霍光和卫子夫什么关系| 什么东西可以减肥| 酷暑难当是什么意思| 孕妇贫血对胎儿有什么影响| 胃炎吃什么食物好养胃| 长颈鹿代表什么生肖| 什么不什么干| 手容易出汗是什么原因| 种草什么意思| 武松的性格特点是什么| 守株待兔是什么生肖| 梦见自己离婚是什么预兆| 哀转久绝的绝什么意思| 什么牙膏好| 夕颜是什么意思| 每天喝柠檬水有什么好处| 知了的学名叫什么| 杜仲有什么作用| 213什么意思| 梦见自己掉头发是什么征兆| 感冒全身酸痛吃什么药| 罗纹布是什么面料| 娟五行属什么| 犯病是什么意思| 耳石是什么东西| 怨妇是什么意思| 荆芥的别名叫什么| 柔然人是现在的什么人| 梅花鹿吃什么食物| 肝回声密集是什么意思| 一什么牛肉| epa是什么营养物质| 12月14日是什么星座| 生化妊娠是什么原因导致的| 安全期一般是什么时候| 合欢树为什么叫鬼树| 卟啉症是什么病| 师弟是什么意思| 大力是什么药| 蚊虫叮咬红肿用什么药快速消肿| 为什么白带是褐色的| eno什么意思| 东北大拉皮是什么做的| 女性肛裂要抹什么药好| 人的五官是什么| 心脏不好的人吃什么好| 口字五行属什么| 淡是什么意思| 再接再厉是什么意思| 精液偏黄是什么原因| 舍曲林是什么药| 三跪九叩是什么意思| 荷叶泡水喝有什么功效| 法器是什么意思| 1.14是什么星座| 鼻炎不能吃什么| 今年流行什么发型| 沥水是什么意思| 仙女下凡是什么生肖| 什么叫甲状腺| 项链折了意味着什么| b2b是什么| 手指关节痛吃什么药好| 什么动物有三个心脏| 雌二醇低是什么原因造成的| 小金人车标是什么车| hp-是什么意思| 什么书没有字| 七杀是什么| 什么是音色| 世界上最大的昆虫是什么| 1926年属什么生肖| 举世无双什么意思| 空腹血糖受损是什么意思| 色调是什么意思| 包皮痒用什么药| 附件囊肿吃什么药最好| 背疼是什么原因| 什么是溶血性疾病| 脾的作用和功能是什么| 婴儿腹泻吃什么好| 涧是什么意思| 寿诞是什么意思| 果酱样大便见于什么病| 什么动物是站着睡觉的| 手上长汗疱疹用什么药| 抄送和密送是什么意思| 沐浴露什么牌子好| 七月与安生讲的是什么| 人体最大的消化腺是什么| 胳膊上的花是打了什么疫苗| 蚂蚁的触角有什么作用| 吃什么补胶原蛋白最快| 上午十点多是什么时辰| 洁身自爱是什么意思| 感冒怕冷吃什么药| ex是什么| 鼻翼长痘是什么原因| 血糖高的人可以吃什么水果| 夏天吃什么菜最好| 师长是什么意思| 舜字五行属什么| 2月25是什么星座| 梅核气有什么症状| 犇是什么意思| 下午三点多是什么时辰| 骨折吃什么水果好| 海东青是什么鸟| 什么是二代身份证| 中秋送什么| sk是什么| 什么东西最伤肾| 肉桂是什么味道| chop是什么意思| 大陆去台湾需要什么手续| 操是什么意思| 惨无人道是什么意思| 布鲁斯是什么| 肠胃感冒是什么症状| 血压偏高是什么原因| 低脂高钙牛奶适合什么人群| 渐冻症是什么病| 养猫的人容易得什么病| 偏头痛什么原因引起的| usc是什么意思| 赤子是什么意思| 贫血吃什么水果补血最快| 斩衰是什么意思| 椰子和椰青有什么区别| 竹子可以做什么| 微量元素是什么| g18k是什么金| 相濡以沫是什么生肖| 用什么消肿最快最有效方法| 什么是小针刀治疗| 什么情况下会得甲亢| 青蛙是什么| 法国的国花是什么花| 8宫代表什么| 人乳头瘤病毒是什么病| 手上长水泡痒用什么药| 3月21日什么星座| 知了为什么叫| 亚洲没有什么气候| 肠癌吃什么| 什么鸟好养| 牙龈萎缩是什么样子| gn什么意思| 什么是绩效工资| 指甲发黄是什么原因| 免疫球蛋白适合什么人| 单侧耳鸣是什么原因引起的| 1月出生是什么星座| 血糖高喝酒有什么影响| 细菌是什么| 百度

人民日报看辽宁--辽宁频道--人民网

百度 此外,4X4SUV智能科技体系的搭载,更全方位满足中国消费者全场合的用车需求。

Ready your enterprise to capture AI opportunities and bolster your cybersecurity, data and AI policies and principles.

Define your AI ambitions with the AI Opportunity Radar

Download this guide to AI readiness.

By clicking the "Continue" button, you are agreeing to the Gartner Terms of Use and Privacy Policy.

Contact Information

All fields are required.

Company/Organization Information

All fields are required.

Optional

4 key initiatives to get your enterprise AI ready

Whether your organization’s ambition is for AI to augment everyday processes or create something game-changing, the organization needs a set of foundational capabilities to succeed.

This guide can help IT leaders ready their organizations to:

  • Define their “AI ambition” and spot AI opportunities

  • Prepare AI cybersecurity

  • AI-ready

    ?

  • Adopt AI principles

Download your copy by completing the form. This guide is also available in Chinese, French, German, Portuguese and Spanish.

See Gartner’s latest AI research in action at our CIO Conferences and Events 2025

AI ambition must weigh feasibility, opportunity, risk

More than 60% of CIOs say AI is part of their innovation plan, yet fewer than half feel the organization can manage its risks. Narrow the gap — first by defining your AI ambitions.

Define your AI opportunities, deployment options and risks

GenAI has enabled machines to transition from being tools to being teammates. This is a big shift that comes with a potential dark side. The C-suite expects CIOs to lead the organization’s AI strategy to capitalize on the benefits of AI while avoiding the risks.?

The stakes are high, given the combination of AI excitement and disillusionment that exists in every organization — disillusionment, because the majority of AI projects have failed to deploy as projected.?

Gartner research finds that between 17% and 25% of organizations have said they planned to deploy AI within the next 12 months every year from 2019 to 2024, yet the annual growth of production deployments was only 2% to 5%.

To help increase the success rate, CIOs should start by helping set the organization’s AI ambition — that is, decide where and how you will use AI in the organization. Given that today’s AI can do everything, including decide, take action, discover and generate, it’s as important to know what you will not do.

An AI plan must take account of three key elements:

  1. AI opportunity ambition

    This reflects the type of business gains you hope to realize from AI. Opportunity ambition identifies where you will use AI (e.g., for internal operations or customer-facing activities) and how (e.g., to optimize everyday activities or create game-changing opportunities). Leverage the Gartner AI Opportunity Radar to map your opportunity ambition.

  2. AI deployment

    This reflects the technological options available for deploying AI, which can enable or limit the opportunities you hope to pursue. Organizations can deploy AI from public, off-the-shelf models trained on public data; leverage a public model and data adapted with your proprietary data; or build in house as a custom algorithm trained on your data. The more customization involved, the higher the investment cost and time to deployment — yet greater customization also enables game-changing opportunities.

  3. AI risk

    AI risk comes in many forms, including unreliable or opaque outputs, intellectual property risks, data privacy concerns and cyber threats. There are also emerging regulatory risks related to the rules and restrictions that different jurisdictions may place on AI, including those related to copyright. Your organization will need to define its risk appetite as it relates to degrees of automation and degrees of transparency.

Engage the executive team to choose AI opportunities to pursue

AI falls into two high-level categories in the organization:

  1. Everyday AI enhances productivity by enabling humans to work faster and more efficiently at the things you already do.
  2. Game-changing AI enhances creativity by either enabling you to create results via new products and services, or through new core capabilities. Game-changing AI will disrupt business models and industries.

Both everyday AI and game-changing AI have internal and external uses. Defining your AI ambition involves examining which combinations of everyday and game-changing AI, and internal or external use cases, you will pursue.

Investment expectations will influence these decisions, given that game-changing AI is not cheap. Though 73% of CIOs say they plan to invest more in AI in 2024 than they did in 2023, CFOs are skeptical about the results: 67% of finance heads say that digital investments have underperformed expectations.

To define realistic AI ambitions, consider three AI investment scenarios with your C-suite team:

  1. Defend your position by investing in quick wins that improve specific tasks. Everyday AI tools have a low cost barrier to adoption, but they will not give your organization a sustainable competitive advantage. Investment here allows you to keep up with the status quo.

  2. Extend your position by investing in tailored and custom applications that provide a competitive advantage. These AI investments are more expensive and take more time to deliver an impact, but they are also more valuable.

  3. Upend your position by creating new AI-powered products and business models. These investments are very expensive, risky and time-consuming, but they have enormous reward potential and could disrupt your industry.

Finally, as CIOs engage business executives on their AI opportunity ambition, ensure they have an accurate understanding of feasibility. For example, you can’t capture opportunities without the requisite technology. You also can’t use AI when those who will use it — internally and externally — aren’t ready for it.

The Gartner AI Opportunity Radar (complete the form above for detail), maps AI ambition in terms of both opportunity and feasibility.?

Note that the biggest opportunities are likely disruptive innovations that could upend an industry and deliver high economic returns, but these are short on feasibility because they involve unproven technology and/or unwilling stakeholders.

Understand AI deployment options and trade-offs in speed and differentiation

The past six months has seen a flurry of AI models and tools released in the market. In addition, many large incumbent independent software vendors (ISVs) are embedding AI into their existing applications. Such competitive jostling is characteristic of most high-stakes, early-stage markets and makes for a confusing array of choices.

Using GenAI as an example, Gartner sees five approaches emerging for deploying AI:

  1. Consume?GenAI embedded in applications, such as using an established design software application, which now includes image generation capabilities (e.g., Adobe Firefly).

  2. Embed?GenAI APIs in a custom application frame so that the enterprises can build their own applications and integrate GenAI via foundation model APIs.

  3. Extend GenAI models via data retrieval, for example using retrieval augmented generation (RAG), which enables enterprises to retrieve data from outside a foundation model (often your internal data) and augment prompts with it to improve the accuracy and quality of model response for domain-specific tasks.

  4. Extend GenAI models via fine-tuning of a large, pretrained foundation model with a new dataset to incorporate additional domain knowledge or improve performance on specific tasks. This often results in custom models that are dedicated to the organization.

  5. Build custom foundation models from scratch,?fully customizing them to your own data and business domains.

Each deployment approach comes with trade-offs between benefits and risks. The key factors influencing these trade-offs are:

  • Costs — Embedded applications and embedding model APIs are the least expensive of the AI deployment options. Building a model from scratch would be the most expensive. In between, costs vary widely, especially with fine-tuning, for which costs are high when updating models with billions of parameters.

  • Organizational and domain knowledge — Most AI foundation models are general-knowledge models. Improving accuracy requires organizations to bring domain and use case specificity through data retrieval, fine-turning or building your own.

  • Ability to control security and privacy — Security and privacy considerations are currently quite broad with GenAI. Building your own models or creating custom models via fine-tuning provides stronger ownership of key assets and more flexibility in terms of the controls you can implement.?

  • Control of model output — An AI foundation model is prone to hallucination risks, as well as propagating biased or harmful behavior. Data retrieval, model fine-tuning and building your own models might be preferred in high-control environments. Business-critical applications will require a human in the loop.

  • Implementation simplicity — Consuming embedded applications and embedding model APIs have advantages due to their inherent simplicity and time to market. They don’t have a significant negative impact in terms of current workflows.

Articulate the AI risk tolerance of each function or business unit

Finalizing the AI opportunities the organization will pursue requires business leaders to articulate the level of risk they are willing to accept related to issues like AI reliability, privacy, explainability and security:

AI reliability

Depending on how it’s trained, all AI may be vulnerable to some degree of:

  • Factual inaccuracies, or partially true outputs that are wrong on important details?

  • Hallucinations, or fabricated outputs

  • Outdated information, due to knowledge cutoffs in the training data

  • Biased information in the training data, resulting in biased outputs

AI privacy

Privacy issues vary from the concerns about identifiable details in the training data to sharing data or outputs, including:

  • Sharing user information with third parties without prior notice, including vendors or service providers, affiliates and other users

  • Processing (re)identifiable data

  • Training with (re)identifiable data that can have real-life impact once in production

  • Sensitive or personal data being unintentionally leaked?

  • Proprietary, sensitive or confidential information entered as prompts or for data retrieval could become part of the knowledge base used in outputs for other users

AI explainability

Machine learning (ML) models are opaque to users and sometimes even to skilled experts. Though data scientists and model developers understand what their ML models are trying to do, they cannot decipher the internal structure or the algorithmic means by which the models process data. This lack of model understandability and therefore explainability — which Gartner defines as capabilities that clarify a model’s functioning — limits an organization’s ability to manage AI risk. Lack of explainability makes a model’s outputs:

  • Unpredictable

  • Unverifiable

  • Unaccountable

AI security

AI may become a new target for malicious actors to either access private data or insert code or training parameters to get the AI to act in ways that serve the adversary’s interests. For example:

  • Personal or sensitive information stored by an AI model being accessed by hackers.?

  • Hackers using prompts to manipulate a large language model (LLM) to give away information it shouldn’t.

  • LLMs being tricked into writing malware or ransomware codes.?

Work with executive leaders to define their risk ambition

Balancing the risks posed by AI with the opportunities the organization wants to pursue requires CIOs to help define the relative roles of humans and AI. The goal is to strike a balance between the degree of automation (from fully automated to “human in the loop”) and the degree of explainability (from fully opaque “black box” AI to fully explainable).

Each CxO needs to declare their acceptable AI risk levels for the major processes in their departments and ensure they align with the AI opportunities they hope to pursue. For example, the head of HR might have a risk tolerance level centered on making the “safest bet” because of the sensitive nature of their work, while the head of customer service might aim for “responsible automation” to allow for automation that can be explained to customers, if required.

Drive stronger performance on your mission-critical priorities.

什么蛇不咬人 为什么会胃胀气 眦是什么意思 喝什么最解渴 川贝是什么
rdw是什么意思 梦见买衣服是什么预兆 脑卒中什么意思 6月22号是什么星座 鸡蛋清敷脸有什么好处和坏处
放疗后吃什么恢复的快 中医讲肾主什么 12月11日什么星座 水痘要注意什么 甘油三酯高吃什么好
2007年属什么 占位是什么意思 胆木是什么 一什么水珠 什么卫什么海
半夏生是什么意思dajiketang.com 胃烧心是什么症状hcv8jop6ns1r.cn 角弓反张是什么意思1949doufunao.com 什么是梅花肉hcv9jop2ns4r.cn 稀料对人体有什么危害hcv8jop7ns5r.cn
美甲光疗是什么hcv7jop6ns6r.cn 拉屎黑色的是什么原因hcv8jop5ns9r.cn 四海扬名是什么生肖hcv8jop5ns4r.cn 蛋白尿是什么意思hcv8jop9ns0r.cn 皮肤过敏有什么好办法cl108k.com
做恐怖的梦预示着什么luyiluode.com 血糖高喝什么稀饭好hcv7jop6ns4r.cn 剖腹产后可以吃什么水果hcv9jop1ns2r.cn 空降是什么意思hcv7jop5ns6r.cn 调理脾胃吃什么好hcv9jop1ns2r.cn
牙龈紫色是什么原因hcv8jop7ns1r.cn ana谱是查什么病的hcv8jop2ns0r.cn 娘娘命是什么样的命hcv9jop1ns1r.cn 耿耿于怀什么意思hcv8jop7ns8r.cn 吃什么可以控制血糖hcv8jop2ns2r.cn
百度